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The stability of compression shocks in streams of spontaneously condensing va- 
por is investigated using the concepts developed in [2]. The stability of a co- 

mpression shock near the channel outlet& which the pressure is constant, and 

ahead of the singular point is considered. The aim is to determine the effect 
of spontaneous condensation of shock stability. The boundary condition at the 

channel outlet was not varied, since the effect of this was fairly clearly demo- 
nstrated in [3-51. It is shown that the presence of a singular point may result 

in the development of oscillatory effects. 

Stability of compression shock in perfect gas flowing in channels of varying cross 

section was investigated in [I, 53 in one-dimensional approximation and linear form- 

ulation. The significant effect of the channel cross section, at which in a steady flow 

the shock is located, on shock stability was established, and the properties of the bou- 

dary condition at the outlet cross section were determined. 

Gasdynamic flows with additional effects, such as blowing of gas into the channel 

through its side walls, flows in the presence of an electric field [Z, 31 or entailing che- 
mical reactions, etc. possess additional properties that affect the flow stability, in 

particular in flows with shock. 

Z. Let us consider in a quasi-one-dimensional approximation an adiabatic steady 

flow of condensing vapor in a channel of varying cross section, 
The system ofequationsof fundamental laws of conservation and phase transforma- 

tions is of the form [6] 

Aij _$ + Bii $& = Pi (i, j = 1,2, . . . ,6) 

u3 0 7% 

f31 =: 0 u3 u2 

u2-1 0 283 

0 0 u4 

F’ = - (y - 1) (bu,E + hu,) - yuIu3 (In A)’ 

FZ = - (bu, + u,g+ (ln A)‘), F3 = 0, F4 = J - u4u3 (In A)’ 

F5 = Jr, + au4 - u6u3 (In A)‘, F6 = Jr, + 2~24, - usuQ (In A)’ 

(1.1) 
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In these formulas u is a column vector with elements (p, p, u, a,,, o,, a,); ‘1 
is a unit matrix; B is matrix of block structure 1, k = 4,5,fj; p, p, and u are 
the pressure, density, and volume of vapor ; WO is the norm of the function of cond- 
ensate particle distribution by sizes; or = o. (r> and Oa = o. (r2); (r) is the 

mean radius of condensate particles; (r’) is the mean square of the radius of condensa- 
te particles; A is channel cross section area, J7 is the ratio of specific heats; E is 
the thermodynamic potential of particles undergoing phase transformation; J is the 
rate of condensate nuclei formation; r9 is the radius of condensate nuclei; b is a 
function of p and p determined by the specific law of phase transformations at the 
surface of condensate particles; h is a function of p and p determined by the law 

of interphase heat transfer: a = b / (4npk); pk is the condensed phase density (pr 

= con&); t is the time, and 5 is a space coordinate. Recurrent indices imply sum- 
mation and a prime indicates the total derivative with respect to a. 

We assume that the steady flow considered here contains subsonic and supersonic 

sections. Transition from supersonic to subsonic velocity takes place continuously 
through the singular point or in the shock wave. Let the considered steady flow cont- 
ain a shock wave. The parameters ahead of the wave and behind it are linked by re- 

lationships 

z+- (6 - ~a-) = ui.+ (6 - us+) (i = 2, 4, 5, 6) (1.2) 

u2--u,- (6 - us-) - ul- = u2+u3+ (6 - us+) - ul+ 

Y ;,- 1 (a-2U3-)2 _ Y Ill+ + (y,+)n 

Y--l _- y - 1 uz+ 

where superscripts minus and plus relate to parameters of the medium ahead and be- 
hind the shock wave, respectively, and 6 is the shock wave velocity. 

We shall investigate the flow stability in its subsonic section between the shock 

wave and some characteristic cross section (z = Q,), for example, the channel 
outlet or the cross section at which transition from subsonic to supersonic velocity takes 
place, i. e. the singular point. Boundary conditions at that characteristic cross section 

may be specified in the general form as 

(1.3) 

Let us assume that the subsonic part of the steady solution is perturbed. We line- 

arize the system of Eqs. (1.1) and boundary conditions (1.2) and (1.3) on the assump- 
tion that unsteady additions of flow parameters (perturbations) are small and their de- 

pendence on time is defined in conformity with [7] by coefficient exp ?J . We 

denote solutions of steady equations by T_J = co] (n, R, V, Qo, i&, 9,) and 

perturbations by u = co1 (p, p, u, coo, w1, w2) (as well as the unsteady solution, 

since it is not subsequently used) and obtain the following system of equations: 

Bij 2 _t (~i$ _ @.i) uj _ 0 

Matrix B in Eqs. [ 1.4) is obtained from matrix B of Eqs. (1.1) by substituting 
for elements u the respective elements U , and matrix G can be respresented in 

the form of four blocks of 3 X 3 elements each 
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G = G1 Gz u I yus* 0 (Us In U,‘)’ 

Ga G ’ 
G,= 0 ua* Uz* 

0 u~u~‘u; U3’ 

-J, -J, Uq* us* 0 0 

GS = - (r*J), - (r*J)p U5* , GI = - a U3* 0 

l - (‘x2J)p - (r*2J)p Ug* 0 - 2a U38c 

where U,* = U,, (ln AU,)‘, n = 3,4,5,6. OIIIY the three elements Gl5 = 

(Y - 1) h, Gls = (y - 1) hE, Gzs = b are nonzero in block G, . Subscripts 
p and p denote respective partial derivatives. 

At the shock the linearized equations are of the form 

@&+ = DC’ $- EHi (1.5) 

where E is a matrix that also consists of four blocks 

0 u,+ ' 
1 2u,+u3+ 

?Ju1+ 
- (y- 1) (CT?+)” US+ 

In block E2 the last column whose elements are U4+, Us+, U,+ is nonzero, 

and block E, = 11 Ua+&2k I/, 1, k = 4, 5, 6. 
Vectors C and H are of the form 

c = co1 (W,l, 0, W,l, K&l, W,l, W,l) 

H = co1 ([bU,l, U,+U,+ [UsI (In A)’ + U,+U,+ [bl, kU, -I 

hU,l fJ1, W, + Jr,], [2aU5 + Jre21) 

where brackets denote the difference between parameters behind and ahead the shock 

wave, i.e. [Uj] = Uj+ - U,-; T and S are vapor temperature and entropy, 

respectively; 
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2. Let us assume that boundary conditions (1.3) is satisfied so close to the shock 
that the solution cannot substantially change over such distance, For simplicity we 
shall consider the case in which the out~etpr~ure is maintained constant. Condition 
(1.6) then assumes the form 

u1 + = 0 (X = C-r& 
(2.1) 

and the expression for h is of the form 

(2.2) 

Y, = - [bl Q,+ i R+, y, L= -[sZ,l (2 -I- (y - 1) (M+)B)b- I R+ 

y4 = (Y - 1) [gsi?, -+ M&l (M+)2 / v* 

Y = (~~~i)~ + 2 /’ (y -- 1)) (1 - R-i R+) - (M”)2x 

(1 - V- / V+), M” =r; V2R / yII 

The denominator in that expression is always positive and, consequently, the sign 
Of h depends on the sign of the numerator whose first term is determined by the chan- 
nel geometry, and the remaining depend on phase transformations and interphase heat 
exchange. 

The first term is negative in the channel divergen part and positive in the conver- 

gent. In the absence of phase transformations and heat exchange this corresponds to the 
well known shock stability In the divergent part of the channel and its instability in 

the convergent part for a specified outlet pressure [J.-S]. 

The second term is negative, hence it con~~but~ to stability of the shock, The 
signs of remaining terms are determined by the laws of phase transformation and inter- 

phase heat exchange, and generally cannot be uniquely dermined. 
As an example we had determined the steady flow of steam with spontaneous con- 

densation, as defined by Eqs. (1. I), on the assumption that the thermal and calorific 

properties conform to those of a perfect gas. The following additional relationships 
and constants were used: the Knudsen number b == 26=(2 ---m+AT); 

h =z 2nh,AT, wherehe = 53.840-s tJ/rn’ deg. sec. is the thermal conductivity 

coefficient of steam [8]; J = (Is / kT)” pi,-1 x (2am I ZCY’~ exp I---Znr*% i f3kT)], 

where k == 1.38.10-2s J/ deg is the Boltzmann constant, p,? =: 779.6 Kg/m3 m 
z 3. $0’26 kg is the mass of a steam molecule, o = o (II) is the surface tension CO- 

efficient, r* = 20 (T -+ AT) I (QQAT), where 5 = f @) , is the phase transfor- 
mation heat; y = 1.3 for steam. Formulas for J and r9 were borrowed from [9] 

and functions o (II) and G (II) are approximations of data appearing in [IO]. The 

flow at the channel inlet was assumed to be at Mach number M (0) = 1.02. 
The behaviour of A = sign h 1 In 1 h )I determined by formula (2.2) along the 

channel and the shape of the channel defined by A ix) (X = xi 1, where f. is 

its maximum length, are shown in Fig. 1. 
Pressure P (normalized with respect to pressure at the channel inlet) and the be- 

haviour of supercooling AT (norma~zed with respect to its maximum value) in the 
flow of steam in a channel of specified shape A (XI are shown in Fig. 1. For corn-- 
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parison, two versions were calculated: One without phase tra~formations~ the other 
with spontaneous condensation are shown in Fig. 1 and 2 by dash and solid lines, res- 
pectively. 

In the absence of phase transformations, as expected, A < 0 in the divergent 
part of the channel and A. > 0 in its convergent part. however phase transformations 
and interphase heat exchange, which substantially affect flow parameters in the conv- 
ergent part of the channel, also alter the behaviour of I, and thus contribute to the 
shock stability, as can be seen from Fig, 2. It follows from curves shown in Fig. 1 by 
solid lines h < 0 throughout the stream with spontaneous condensation. 

Since steady slows with spontaneous condensation in channels ofvaryingcross section 
were thoroughly investigated in [S], no further details of the behaviour of parameters 
of such flow are considered here. 
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4 

0 

-4 

-8 

Fig.1 

0,25 0.50 0.75 x 
Fig. 2 

3. Of interest is the case when condition (1.3) is specified at the cross section at 
transition through the speed of sound, induced by phase transformations [ll]. If the 
singular point lies reasonably close to the compression shock, the solution of system 
(1.4) can be obtained in explicit form. 

The condition at thecross section where the transition through the speed of sound 
takes place is obtained from the stipulation of regularity of solution of system (1.4) 
at the singular point. 

For this we reduce the system of Eqs. (1.4) to the normal form 

.” Ut’ =: _-(hA”i - Gmi) u,BlifIBijl (3.1) 

where Bli is the signed tinor of element Bij in the expansion of deter~n~t 
1 pj 1 = pq (342 - 1) / R. For the existence of a continuous solution passing 

through the singular point it is necessary that the numerator and the denominator in 
Eq. (3.1) simultaneously vanish. This yields 

(hAmi - G"') u,Bji = 0, M = 1 (X = xh) (3.2) 
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Condition (3.2) can be considered valid when h is small [S]. 
First, let us assume a linear dependenceof parameters along the section Ax betw- 

een the shock wave and the singular point 

Ui (+b) = Ui+ + (dui / &)+ AX (3.3) 

In accordance with (3.1) we have 

Ui (Xb) = Z&i+ - (iAm’ - G+"j) u,,+bji+Ax, bit+ = Bii+ / 1 Bii+l (3.4) 

Then from (1.5), (3.4), and (3.2) we obtain for h an equation of the form 

(h3 [AkWYn&nm AX] + h2 [Aki AmsHnbs+kenm Ax + 
(@Am' + AkjG+mS) Cnb&enm - AkjC’e,.k - 

h [(GkjC’ + A”‘H’) erk + (GkjGf”“C” + GkjA”“H’ + 

AkSGmSH “) b$3,,AX] - 

[GkjH’e,, + GkiG+m”Hnb~ke,mAx]} Bii = 0 (x = xb) 
eij = Eij i 1 Eji 1 

where Eij is the signed minor of element Eii in the expansion of determinant 1 pi 1. 
The above cubic equation in h may have, depending on coefficients, real, as 

well as complex roots. Complex roots with positive real part correspond to the unstable 
mode, while the negative real part shows that the perturbation damping is of a periodic 
kind. Pure imaginary ?t indicate a possible periodic character of the flow mode [ll]. 
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